7.4 menas metalurgicasRESUMENMediante la conjugación de los conocimientos acumulados hasta el momento sobre las perspectivas de la Biolixiviación en el tratamiento de los minerales lateríticos de baja ley y las principales limitaciones de las tecnologías convencionales de tratamiento de estos minerales, se evalúa el proceso lixiviación en medio orgánico para la recuperación del cobalto presente en las menas de baja ley en níquel cubanas. Además, se muestra como una opción a tener en cuenta para la solución de los principales problemas socioambientales y económicos existentes en la Industria Cubana del Níquel, generados por el desaprovechamiento racional de las menas lateríticas.En el trabajo se demuestra que es posible recuperar más del 90% del cobalto contenido en las menas lateríticas de baja ley en níquel en cuatro días mediante la lixiviación con el ácido tartárico. Además se determinan los principales parámetros físico químicos que inciden en dicho proceso y se analizan las perspectivas de la lixiviación orgánica en el tratamiento de los minerales fuera de balance generados en la Industria Cubana del Níquel y crear así una nueva fuente de ingresos para el paísPALABRAS CLAVES: cobalto, ácido tartárico, mena laterítica. ABSTRACTBy means of the conjugation of the knowledge accumulated until the moment on the perspectives of the Bioleaching in the treatment of the lateritic ores of low law and the main limitations of the conventional technologies of treatment of these minerals, the process leaching is evaluated with organic acid for the recovery of the present cobalt in minerals of low law in nickel and like an option to keep in mind for the solution of the main problems socio - environmental and economic existent today in the Cuban Industry of the Nickel, generated by the non rational used of the laterites mineralsIn the work it is demonstrated that it is possible to recover more than 90% of the contained cobalt in the ores lateríticas of low law in nickel in four days by means of the leaching with the tartaric acid. Also determined the main parameters physique - chemical that they impact in this process and is carried out a critical analysis about the perspectives of the organic leaching in the treatment of the minerals outside of balance generated in the Cuban Industry of the Nickel and to create this a new source of revenues for the country. KEY WORDS: Cobalt, tartaric acid, lateritic oresINTRODUCCION.La Minería, a través de los siglos, ha formado parte de la historia y del desarrollo económico de muchos países en el mundo. Sin embargo, muy notorios han sido los efectos sociales y ambientales que ha generado esta industria en detrimento de los diferentes ecosistemas relacionados con la mismaEn la región de Moa, donde se concentran las mayores reservas lateríticas del país y una de las más importantes a nivel mundial; existen grandes volúmenes de minerales de baja ley en níquel o como también se les conoce minerales fuera de balance, formando parte de las cortezas de intemperismo que afloran en esta zona. Estas en el transcurso de los años han generado serios problemas ambientales durante su vertimiento. Hasta el momento, no ha sido posible su concentración por métodos de beneficio ni su tratamiento por las tecnologías existentes. Por lo tanto, cualquier concepción tecnológica encaminada al procesamiento de estos minerales de forma integral y con bajos costos, supondría múltiples beneficios para el paísLa introducción de nuevas tecnologías con procesos productivos más baratos y selectivos, equipamientos más sencillos y un menor impacto en el medio, ha alcanzado en la última década, una importante prioridad para muchas entidades metalúrgicas en el mundo. Destacando, que la Biotecnología de los Metales ha constituido un punto coincidente en las alternativas valoradas por los diferentes investigadores, especialmente en la solución de los problemas medioambientales generados por las industrias productoras, fundamentalmente, en la descontaminación de los suelos, las aguas superficiales, el tratamiento de residuos de diversa naturaleza y el procesamiento de minerales fuera de balanceEn tal sentido, muchos investigadores han dirigido sus esfuerzos al perfeccionamiento y la mejora continua de estos procedimientos. Una variante que ha permitido lograr resultados valiosos en el tratamiento integral de desechos minerales, particularmente menas no sulfuradas, ha sido el uso de ácidos orgánicos, ya sea sintéticos o del metabolismo de microorganismos biolixiviadores, específicamente hongos, permitiendo solubilizar cantidades significativas de metales contenidos en estos materiales, dando lugar a la formación de compuestos complejos [Bosecker, K., 1985; Sukla y col, 1993].La búsqueda de nuevas alternativas que contribuyan en parte a la solución de los principales problemas que tiene planteada la Industria Metalúrgica en la actualidad, constituye un imperativo para la economía cubana, especialmente el tratamiento de residuales industriales y el procesamiento de minerales fuera de balanceUn interesante trabajo es el publicado por Tzeferes, (1994), que evaluó la lixiviación del níquel y el cobalto presentes en minerales lateríticos de baja ley de Grecia, empleando un hongo y metabolítos ácidos producidos biológicamente. La extracción de níquel empleando solamente los ácidos carboxílicos fue de 70 72 % y la de cobalto de 50%. Al utilizar la técnica en que participan los microorganismos (Penicillium sp. y Aspergillus sp.), la solubilización del níquel fue solo de 55 60 % durante 20 días. Concluyendo que la menor efectividad al utilizar el cultivo estuvo en dependencia de su capacidad para producir los metabolitos ácidosDe ahí que se propone evaluar la importancia de la implementación de esta alternativa hidrometalúrgica en el procesamiento de las laterítas fuera de balance, hacia la recuperación de valores metálicos de alto valor comercial, particularmente el cobalto; para lograr así, disminuir el impacto de estos minerales en los diferentes ecosistemas y al mismo tiempo, establecer las perspectivas de la lixiviación orgánica en el tratamiento de los minerales fuera de balance generados en la Industria Cubana del NíquelMATERIALES Y MÉTODOSPara el desarrollo de la investigación se empleó el ácido tartárico (C4H6O6) como agente lixiviante a la concentración de 0.5 y 0.25 mol/L.Caracterización de la materia prima a investigarSe empleó una mena laterítica de baja ley en níquel, la cual se seleccionó del Yacimiento Punta Gorda, en la región de Moa. Para llevar a cabo la investigación, se tomó una muestra mineral de aproximadamente dos toneladas, la cual fue sometida a una rigurosa homogeneización y cuarteo por el Método del Anillo y el Cono; el cuarteo se realizó con un Divisor de Jones. Posteriormente, el mineral se sometió a una etapa de molienda en un molino de bolas con capacidad de 0.073 m3, empleando un tiempo de molienda de 30 minutos, el cual se obtuvo como resultado de un estudio previo sobre la cinética de la molienda de este tipo de mena, lográndose en ese tiempo un 85 % de la clase (- 0.090 + 0.045 mm).En la tabla siguiente se muestra la composición química de las menas fuera de balance empleadas en el proceso de lixiviación, empleando para ello las técnicas de Espectroscopia de Fluorescencia de Rayos X, y la Espectrometría de Emisión Atómica por Plasma Inducido (ICP) y la Difractometría de Rayos X. En la tabla siguiente se muestra la composición química de la mena empleada en la investigación aplicando la Espectroscopía de Fluorescencia de Rayos RESULTADOS Y DISCUSIÓNInfluencia de la concentración inicial del ácido tartárico.Para determinar el efecto de la concentración del ácido tartárico en la recuperación del cobalto, se realizaron varias pruebas experimentales en las que se varió a dos niveles la concentración del agente lixiviante y se mantuvo constante el resto de los parámetros. En la siguiente figura se exponen los resultados de uno de estos experimentosComo se aprecia en la representación gráfica, a los cuatro días de lixiviación se logra el máximo de extracción del cobalto, cerca de un 90 % a la concentración de 0.5 M (7.5 g/l de ácido). A la concentración de 0.25 M (3.8 g/l) se extrae alrededor del 70%. A partir de ahí, la lixiviación muestra fluctuaciones en la extracción de cobalto a ambas concentraciones del ácido, sin llegar a superar el porcentaje máximo de extracción obtenido en los primeros cuatro días. Esto estuvo dado por la precipitación de determinados componentes de la disolución, fundamentalmente aluminio en forma de sales complejas, con bajo índice de solubilidad, incidiendo de manera nociva el proceso de lixiviación. Esta precipitación provoca el arrastre de iones metálicos de interés como el cobalto durante la cristalización de estas salesSe aprecia que el incremento en la concentración inicial del ácido tartárico favorece la extracción del cobalto de manera significativa, lo cual se encuentra en correspondencia con los resultados obtenidos por Bosecker, K., 1988; Alibhai, Leak y col, 1991; Bruguera, Rodríguez G. y Coto, 1999, quienes reportan que al emplear concentraciones de ácidos orgánicos -ya sean sintéticos o a los niveles que los producen los microorganismos heterótrofos- se aprecia un incremento en la extracción del metal al aumentar la concentración del ácido.Determinación del efecto de la velocidad de agitación>Para analizar el efecto de la velocidad de agitación en el proceso de solubilización del cobalto con el ácido tartárico, se varió la velocidad de agitación del agitador. En la siguiente figura se exponen los resultados de dicho análisis.r En la representación gráfica anterior, la variación en la velocidad de agitación no muestra un efecto significativo en la extracción del cobalto, existiendo una ligera diferencia en las curvas que caracterizan la extracción de este metal a diferentes velocidades de agitación. Por otro lado, se observa en la figura que a los cuatro días de lixiviación se obtiene el máximo de recuperación del cobalto, llegando hasta un 85% al emplear una velocidad de agitación de 160 rpm. Como en los análisis anteriores, transcurrido este tiempo de lixiviación la extracción de este metal varía irregularmente, mostrando que existe una disminución en la concentración de este metal en disolución. Esto indica que después de los cuatro días no es viable continuar el proceso de lixiviaciónDeterminación de la influencia de la temperatura en la recuperación del cobaltoPara determinar el efecto de la temperatura en la lixiviabilidad del cobalto presente en las menas lateríticas de baja ley en níquel se realizaron varios experimentos en los que se varió la temperatura del medio a varios niveles de este parámetro. En la figura siguiente, se muestran los resultados de la extracción de cobalto al variar la temperaturaComo se aprecia, a los cuatro días de lixiviación, para el experimento a 60°C la extracción de cobalto es alrededor del 90 % y a los 25 °C no supera el 30 %, lo cual indica que el incremento en la temperatura favorece significativamente la lixiviabilidad del cobalto. Como se aprecia, no es recomendable evaluar el empleo de niveles de temperaturas superiores a los 60 °C, ya que las condiciones físicas de la instalación que se ha empleado para llevar a cabo la lixiviación de la mena seleccionada, son normales, es decir el reactor que se ha empleado es totalmente abierto y un incremento en la temperatura por encima de este nivel intensificaría marcadamente las pérdidas de líquido en el medio lixiviante por evaporación. Determinación del efecto del tamaño de la partículaEl tamaño de la partícula, es otro factor que se tuvo en cuenta en la investigación, partiendo del hecho de que este parámetro determina en grado sumo el nivel de liberación del metal de interés en el mineral y por consiguiente define en gran medida la velocidad de disolución. En la figura siguiente se exponen los resultados de la extracción del cobalto con el ácido tartárico bajo estas condicionesComo se aprecia en la figura, a los cuatro días se extrae cerca del 90 % del cobalto presente en esta mena, empleando un tamaño de partícula de 0.090 mm, a mayores valores a este no se logra extraer más del 60 % de este metal. Perspectivas de la lixiviación orgánica en la recuperación de cobalto>En análisis anteriores se pone de manifiesto que para la solución de los principales problemas que se generan en el desaprovechamiento de los minerales fuera de balance en la Industria del Níquel, la vía más efectiva es aquella que posea necesidades energéticas reducidas, que los consumos de reactivos sean reducidos, que los costos de operación sean bajos y que posean instalaciones flexibles. El conjunto de resultados brindados en pos del aprovechamiento integral de las reservas lateríticas cubanas, abren un nuevo e interesante espacio en el campo de la hidrometalurgia, especialmente en nuestro país ya que, se logra la recuperación del cobalto como elemento primario, nunca antes establecido en la Industria del Níquel, permite el desarrollo de otras esferas científicas afines a la Biotecnología, principalmente la Biología Molecular y la Ingeniería Genética como nuevos paradigmas de las ciencias, tributa al desarrollo sostenible de la región, a través del procesamiento de grandes volúmenes de contaminantes; además, fortalece la integración entre entidades con posibilidades económicas y financieras diferenciadas.CONCLUSIONES. La lixiviación en medio orgánico permite procesar los excesivos volúmenes de minerales fuera de balance que se generan en la Industria del Níquel, logrando extraer más del 90% del cobalto contenido en estos materiales empleando concentraciones de ácido tartárico de 0.5M, temperatura de 60ºC, tamaños de partículas inferiores a 0.090 mm y velocidades de agitación de 160 rpm, en 4 días de lixiviación. Con el tratamiento tecnológico de estos residuales de la minería, se logra mitigar considerablemente el efecto medioambiental que generan en los diferentes ecosistemas estos materiales.BIBLIOGRAFIA. Alguacil, F.J., y Merino, Y.: Biotratamiento de contaminantes de origen inorgánico. Revista de Metalurgia. CENIM, vol.- 34, No- 5, 1998, pp. 428 437. Ballester, A.: Minería Química. Instituto Tecnológico Geominero de España. 1991, pp. 652. Bosecker, K.: Leaching of lateritic nickel ore with heterotrophic microorganisms. Fundamental and Applied Biohydrometallurgy Process. 6TH International Symposium on Biohydrometallurgy. Vancouver, Canada. 19854. Coello, A., L., y otros: Distribución fraccional de lo valores metálicos en el escombro laterítico. Revista Minería y Geología. Vol.- XV, No- 1, 1998, pp. 37 42 Iglesias, N., F. Carranza e I. Palencia: La Biolixiviación como pretratamiento de menas auríferas refractarias en matriz de sulfuros. Revista de Metalurgia. CENIM. Vol.- 34, No- 1, 1998, pp. 29 38.
6. Korobushkina, E.D., y otros: Role of microorganisms in the hipergene migration of gold. Biogeotecnology of metals. Proceedins of International Seminar and International Training Course. Moscow, 1985.
7. Palacios, A., Rodríguez G., J.: Tratamiento de concentrados de Escombro Laterítico por vía de la lixiviación ácida a presión. Revista Minería y Geología. Vol.- XIV, No- 2, 1997, pp. 14
Rossi, G.: Biohydrometallurgy. McCraw Hill, Hamburgo, 1990, pp. 80 82. Sukla L.B., Panchanadikar V.V.: Biolixiviación de una mena laterítica de níquel usando un microorganismo heterótrofo. Hydrometallurgy vol.32(3), 1993 : pp- 373 379 Tzeferes P.G., Agatzini S., Nerantzis E.T.: Lixiviación microbiana de un mineral de níquel no sulfuroso usando microorganismos heterótrofos. Letters in Applied Microbiology vol-18(4), Lixiviación de un mineral laterítico(Hematítico) de baja ley usando un hongo y metabolítos ácidos producidos biológicamente. International Journal of mineral processing vol-42 Enlace permanente. No hay comentarios. Comentar7.3 propiedades mecanicas de los materialesEn ingeniería, las propiedades mecánicas de los materiales son las características inherentes que permiten diferenciar un material de otros, desde el punto de vista del comportamiento mecánico de los materiales en ingeniería, también hay que tener en cuenta el comportamiento que puede tener un material en los diferentes procesos de mecanizados que pueda tener. Entre estas características mecánicas y tecnológicas destacanResistencia a esfuerzos de tracción, compresión, flexión y torsión, así como desgaste y fatiga, dureza, resiliencia, elasticidad, tenacidad, fragilidad, cohesión, plasticidad, ductilidad, maleabilidad, porosidad, magnetismo, las facilidades que tenga el material para soldadura, mecanizado, tratamiento térmico así como la resistencia que tenga a los procesos de oxidación, corrosión. Asimismo es interesante conocer el grado de conductividad eléctrica y la conductividad térmica que tenga y las facilidades que tenga para formar aleaciones. Aparte de estas propiedades mecánicas y tecnológicas cabe destacar cuando se elige un material para un componente determinado, la densidad de ese material, el color, el punto de fusión la disponibilidad y el precio que tenga. Debido a que cada material se comporta diferente, es necesario analizar su comportamiento mediante pruebas experimentalesEntre las propiedades mecánicas más comunes que se mide en los materiales están la resistencia a tracción, a compresión, la deformación, el coeficiente de Poisson y el módulo de elasticidad o módulo de Young.
20/04/2009 10:33 Autor: sebastianlm. Enlace permanente. No hay comentarios. Comentar.
7.2 diferencias entre metalurgica y sidelurgica
La siderurgia trata de la extracción de metales de sus menas, sus fusiones, aleaciones, y como final presentar los lingotes de metalLa metalurgia es a partir de los lingotes de metal y sus aleaciones el transformarlos en objetos metalicos (barras, laminas, chapas, vigas, etc.)para su posterior transformación final Enlace permanente. No hay comentarios. Comentar7.1 diferencias entre acero y fundicion
El acero es la aleación de hierro y carbono, donde el carbono no supera el 2,1% en peso[1] de la composición de la aleación, alcanzando normalmente porcentajes entre el 0,2% y el 0,3%. Porcentajes mayores que el 2,0% de carbono dan lugar a las fundiciones, aleaciones que al ser quebradizas y no poderse forjar a diferencia de los aceros, se moldean.Se denomina fundición al proceso de fabricación de piezas, comúnmente metálicas pero también de plástico, consistente en fundir un material e introducirlo en una cavidad, llamada molde, donde se solidifica.El proceso tradicional es la fundición en arena, por ser ésta un material refractario muy abundante en la naturaleza